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Abstract

Composites made from two linear isotropic elastic materials are subjected to a uniform

hydrostatic stress. It is assumed that only the volume fraction of each elastic material is

known. Lower bounds on all rth moments of the hydrostatic stress field inside each phase are

obtained for rX2. A lower bound on the maximum value of the hydrostatic stress field is also

obtained. These bounds are given by explicit formulas depending on the volume fractions of

the constituent materials and their elastic moduli. All of these bounds are shown to be the best

possible as they are attained by the hydrostatic stress field inside the Hashin–Shtrikman coated

sphere assemblage. The bounds provide a new opportunity for the assessment of load transfer

between macroscopic and microscopic scales for statistically defined microstructures.
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1. Introduction

Many composite structures are hierarchical in nature and are made up of
substructures distributed across several length scales. Examples include fiber-reinforced
see front matter r 2005 Elsevier Ltd. All rights reserved.
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laminates as well as naturally occurring structures like bone. From the perspective of
failure initiation, it is crucial to quantify the load transfer between length scales. It is
common knowledge that the load transfer can result in local stresses that are
significantly greater than the applied macroscopic stress, see for example Kelly and
Macmillan (1986). Quantities useful for the study of load transfer include the higher-
order moments of the local stress. The higher moments are sensitive to local stress
concentrations generated by the interaction between the microstructure and the
macroscopic load. In this article, we find optimal lower bounds on all higher
moments of the local hydrostatic stress inside random composites made from two
isotropic elastic materials in prescribed proportions. These bounds provide the
minimum amount of hydrostatic stress amplification that can be expected from this
class of composites. Composite systems that are sensitive to local hydrostatic stress
concentrations include rubber toughened plastics, see Chen and Mai (1999).
The composite is subjected to a macroscopic hydrostatic loading s0I , where s0 is a

constant and I is the identity matrix. The local stress tensor at each point x inside the
composite is denoted by sijðxÞ and the hydrostatic stress sHðxÞ is given by

sHðxÞ ¼ ðs11ðxÞ þ s22ðxÞ þ s33ðxÞÞ=3. (1.1)

For planar elastic problems the hydrostatic stress reduces to sHðxÞ ¼
ðs11ðxÞ þ s22ðxÞÞ=2. The load transfer is expressed by the ratio RHðxÞ relating the
local hydrostatic stress sHðxÞ to the imposed macroscopic stress s0 given by

RHðxÞ ¼
sHðxÞ
s0

. (1.2)

In this treatment, both two- and three-dimensional elastic problems are
considered. For three-dimensional problems the composite is contained inside a
unit cube Q. The two-dimensional elastic problem corresponds to long fiber
reinforced materials with fixed cross-sectional geometry subjected to transverse
loads. In this context, Q is a unit square containing a transverse slice of the fibrous
composite. The volume or area average of a quantity q over Q is denoted by hqi.
In this work, we consider the moments of the load transfer ratio RHðxÞ inside each

phase given by

hw1jRHðxÞj
ri1=r and hw2jRHðxÞj

ri1=r (1.3)

for 2pro1. Here, w1 is the indicator function of material one taking the value 1
inside the set occupied by material one and 0 outside. Similarly w2 is the indicator
function of material two and w2ðxÞ ¼ 1	 w1ðxÞ. The part of Q occupied by material
one is denoted by Q1 and the part occupied by material two is denoted by Q2. We
also consider the L1 norms given by

kRHkL1ðQ1Þ
¼ lim

r!1
hw1jRHðxÞj

ri1=r,

kRHkL1ðQ2Þ
¼ lim

r!1
hw2jRHðxÞj

ri1=r,

kRHkL1ðQÞ ¼ lim
r!1

hjRHðxÞj
ri1=r. ð1:4Þ
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The moments and L1 norms of RH provide measures of the load transfer that are
sensitive to the effects of local stress amplification generated by the microgeometry.
Explicit optimal lower bounds on the moments (1.3) and L1 norms (1.4) are derived.
These bounds hold for all configurations of the two elastic materials subject to
prescribed constraints on the volume fractions of each of the materials. It is shown
that the configurations that minimize all moments and L1 norms of RH are given by
the Hashin and Shtrikman (1962) coated sphere assemblages. For the two-
dimensional problem the optimal configurations are given by the Hashin and
Shtrikman (1962) coated cylinder assemblages. These configurations are described in
detail in Section 5. The approach presented here is motivated by the observations
recently used to obtain optimal lower bounds on the higher moments and the L1

norm of the electric field for two-phase random dielectrics, see Lipton (2004).
We conclude by noting that earlier work identifies the optimal inclusion shapes

that minimize the maximum eigenvalue of the local stress for a given constant
applied stress. These investigations are carried out in the context of two-phase linear
elasticity. The work presented in Wheeler (1993) provides an optimal lower bound
on the supremum of the maximum principal stress for a single simply connected stiff
inclusion in an infinite matrix subject to a remote stress at infinity. The optimal
shapes are given by ellipsoids. The work presented in Grabovsky and Kohn (1995)
provides an optimal lower bound on the supremum of the maximum principal stress
for two-dimensional periodic composites consisting of a single simply connected stiff
inclusion in the period cell. The bound is given in terms of the area fraction of the
included phase and for an explicit range of prescribed average stress the optimal
inclusions are given by Vigdergauz (1994) shapes.
2. Elastic boundary value problem for composite materials

In this section, we recall the canonical boundary value problem used to describe
elastic fields in composite materials, see for example Milton (2002). The elastic stress
and strain fields sðxÞ and �ðxÞ inside the composite satisfy �ijðxÞ ¼ ðui;jðxÞ þ uj;iðxÞÞ=2
and sðxÞ ¼ CðxÞ�ðxÞ. Here, CðxÞ is the local elasticity tensor and ui;j is the derivative
of the ith component of the displacement along the jth direction. The elasticity
tensors of materials one and two are specified by the shear and bulk moduli m1; k1

and m2;k2 respectively. Without loss of generality it is supposed that m14m2. The
equation of elastic equilibrium inside each phase is given by

divs ¼ 0. (2.1)

It is assumed that there is perfect bonding between the materials so that the
displacement u and traction sn are continuous across the two phase interface, i.e.,

uj1 ¼ uj2 ,

sj1n ¼ sj2n. ð2:2Þ

Here, n is the unit normal to the interface pointing into material two and the
subscripts indicate the side of the interface that the displacement and traction fields
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are evaluated on. It is supposed that Q is the period cell for an infinite elastic medium
and the elastic displacement u inside the composite is decomposed into a Q periodic
part uper and a linear part �ijxj such that ui ¼ u

per
i þ �ijxj. It is easily seen that � ¼ h�i.

The composite is subjected to an imposed average macroscopic stress s ¼ hsi. The
effective elastic tensor Ce relates the imposed macroscopic stress to the average strain
and is given by

s ¼ Ce�. (2.3)

In this paper, the imposed macroscopic stress is taken to be hydrostatic, i.e.,

s ¼ s0I . (2.4)

The optimal lower bounds presented in subsequent sections will be established
with the aid of the following identities relating the effective elastic properties
to the first moment of the hydrostatic stress in each phase. The identities are
given by

trfhw2ðxÞsðxÞig ¼
ds0k2ð1	 k1ðCeÞ

	1I : IÞ

k2 	 k1
(2.5)

and

trfhw1ðxÞsðxÞig ¼
ds0k1ð1	 k2ðCeÞ

	1I : IÞ

k1 	 k2
. (2.6)

We establish the first identity noting that the second follows from identical
arguments. Expanding Eq. (2.3) one obtains

Ce� ¼ hðC1 þ w2ðC
2 	 C1ÞÞ�ðxÞi. (2.7)

Rearranging terms and taking the trace gives

k2

k2 	 k1
trfZg ¼ trfhw2ðxÞsðxÞig, (2.8)

where

Z ¼ ðCe 	 C1Þ� ¼ ðCe 	 C1ÞðCeÞ
	1s. (2.9)

Upon setting s ¼ s0I a straightforward calculation delivers Eq. (2.5).
3. Optimal lower bounds on the load transfer ratio

Optimal lower bounds on the moments and L1 norms of the load transfer ratio
RH are presented. The optimal bounds are given in terms of the proportions and the
elastic constants of the two materials. For future reference the proportions of
material one and two are specified by y1 and y2, respectively, and are given by the
volume or area averages of the characteristic functions

y1 ¼ hw1i; y2 ¼ hw2i; y1 þ y2 ¼ 1. (3.1)
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In what follows, the parameter d gives the dimensionality of the elastic problem
under consideration. The particular form of the lower bounds depends on whether
the elastic materials are well ordered, k14k2 or non-well-ordered k1ok2.
We introduce the stress amplification factors given by

L1 ¼
k1ðk2 þ 2m2ðd 	 1Þ=dÞ

k1k2 þ ðy1k1 þ y2k2Þ2m2ðd 	 1Þ=d
, (3.2)

L2 ¼
k2ðk1 þ 2m1ðd 	 1Þ=dÞ

k1k2 þ ðy1k1 þ y2k2Þ2m1ðd 	 1Þ=d
, (3.3)

M1 ¼
k1ðk2 þ 2m1ðd 	 1Þ=dÞ

k1k2 þ ðy1k1 þ y2k2Þ2m1ðd 	 1Þ=d
, (3.4)

and

M2 ¼
k2ðk1 þ 2m2ðd 	 1Þ=dÞ

k1k2 þ ðy1k1 þ y2k2Þ2m2ðd 	 1Þ=d
. (3.5)

The lower bounds and the associated optimal configurations are presented in the
following two subsections.

3.1. Optimal lower bounds for the well-ordered case k14k2

For the well-ordered case k14k2 and L1414L2. The optimal lower bounds on
the moments of RH are given by the following results.

3.1.1. Optimal lower bounds on the moments of the load transfer ratio in material one

For fixed values of y1 and y2, the load transfer ratio inside material one satisfies

y1=r
1 L1phw1jRHðxÞj

ri1=r for 2prp1. (3.6)

Moreover, for d ¼ 2ð3Þ, the load transfer ratio inside material one for the coated
cylinder (sphere) assemblage with core of material one and coating of material two
attains the lower bound (3.6) for every r in 2prp1.

3.1.2. Optimal lower bounds on the moments of the load transfer ratio in material two

For fixed values of y1 and y2, the load transfer ratio inside material two satisfies

y1=r
2 L2phw2jRHðxÞj

ri1=r for 2prp1. (3.7)

Moreover, for d ¼ 2ð3Þ, the load transfer ratio inside material two for the coated
cylinder (sphere) assemblage with core of material two and coating of material one
attains the lower bound (3.7) for every r in 2prp1.

3.1.3. Optimal lower bound on the L1 norm of the load transfer ratio

For fixed values of y1 and y2, the load transfer ratio satisfies

L1pkjRHðxÞjkL1ðQÞ. (3.8)
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Moreover, for d ¼ 2ð3Þ, the load transfer ratio inside the coated cylinder (sphere)
assemblage with core of material one and coating of material two attains the lower
bound (3.8).
For k14k2 and 14y140 it follows from Eq. (3.8) that composites amplify the

imposed macroscopic stress. Indeed, since L141 for k14k2 and 14y140, it is clear
that every composite has points inside material one where the magnitude of the local
hydrostatic stress is greater than the magnitude of the applied macroscopic stress.
The stress amplification given by L1 is plotted in Fig. 1 as a function of y1 and k2=k1

for k2=m2 ¼ 1
3
and 0:1py1p1.

3.2. Optimal lower bounds for the non-well-ordered case k1ok2

For k1ok2, one has that M2414M1. The optimal lower bounds on the moments
of RH are given by the following results.

3.2.1. Optimal lower bounds on the moments of the load transfer ratio in material one

For fixed values of y1 and y2 the load transfer ratio inside material one satisfies

y1=r
1 M1phw1jRHðxÞj

ri1=r for 2prp1. (3.9)
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Fig. 1. The stress amplification L1 is plotted as a function of y1 and k2=k1 for k2=m2 ¼ 1
3
.
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Moreover, for d ¼ 2ð3Þ, the load transfer ratio inside material one for the coated
cylinder (sphere) assemblage with core of material two and coating of material one
attains the lower bound (3.9) for every r in 2prp1.

3.2.2. Optimal lower bounds on the moments of the load transfer ratio in material two

For fixed values of y1 and y2, the load transfer ratio inside material two satisfies

y1=r
2 M2phw2jRHðxÞj

ri1=r for 2prp1. (3.10)

Moreover, for d ¼ 2ð3Þ, the load transfer ratio inside material two for the coated
cylinder (sphere) assemblage with core of material one and coating of material two
attains the lower bound (3.10) for every r in 2prp1.

3.2.3. Optimal lower bound on the L1 norm of the load transfer ratio

For fixed values of y1 and y2, the load transfer ratio satisfies

M2pkjRHðxÞjkL1ðQÞ. (3.11)

Moreover, for d ¼ 2ð3Þ, the load transfer ratio the coated cylinder (sphere)
assemblage with core of material one and coating of material two attains the lower
bound (3.11).
For k1ok2 and 14y240 it follows from Eq. (3.11) that composites amplify

the imposed macroscopic stress. Indeed, since M241 for k24k1 and 14y240, it is
clear that every composite has points inside material two where the magnitude of
the local hydrostatic stress is greater than the magnitude of the applied macro-
scopic stress.
4. Lower bounds on the local hydrostatic stress

In this section, we establish lower bounds on the hydrostatic stress field inside each

material. The fourth order identity is denoted by I and Iijkl ¼
1
2
ðdikdjl þ dildjkÞ. The

projection onto the hydrostatic part of the stress is denoted by PH and is given
explicitly by

PH
ijkl ¼

1

d
dijdkl and PHsðxÞ ¼ sHðxÞI . (4.1)

The projection onto the deviatoric part of the stress is given by PD ¼ I	 PH.
The isotropic elasticity tensor associated with each component material is
written as

Ci ¼ 2miPD þ dkiPH for i ¼ 1; 2, (4.2)

where d ¼ 2 for planar elastic problems and d ¼ 3 for the three-dimensional
problem.
For any symmetric d � d stress field ZðxÞ defined on Q, one has

hw2ðxÞP
HðsðxÞ 	 ZðxÞÞ : ðsðxÞ 	 ZðxÞÞiX0. (4.3)
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Setting Z equal to a constant stress Z one obtains

hw2ðxÞP
HsðxÞ : sðxÞiX2PHZ : hw2ðxÞsðxÞi 	 y2PHZ : Z. (4.4)

Optimizing over Z gives

hw2ðxÞP
HsðxÞ : sðxÞiX

1

y2
PHhw2ðxÞsðxÞi : hw2ðxÞsðxÞi. (4.5)

It now easily follows from Eq. (4.1) that

hw2ðxÞjsHðxÞj
2iX

1

y2
jhw2ðxÞsHðxÞij

2. (4.6)

Division of both sides of Eq. (4.6) by s20 gives

hw2ðxÞjRHðxÞj
2iX

1

y2
jhw2ðxÞRHðxÞij

2. (4.7)

From Eqs. (2.5) and (4.7) one obtains

hw2ðxÞjRHðxÞj
2iX

ðk2Þ2ð1	 k1ðCeÞ
	1I : IÞ2

y2ðk2 	 k1Þ2
. (4.8)

For p and q such that pX1 and 1=p þ 1=q ¼ 1, one applies Hölder’s inequality to
obtain

y1=q
2 hw2ðxÞjRHðxÞj

2pi1=p
Xhw2ðxÞjRHðxÞj

2i, (4.9)

and it follows that

hw2ðxÞjRHðxÞj
2pi1=p

X
y1=p
2

y22

ðk2Þð1	 k1ðCeÞ
	1I : IÞ

ðk2 	 k1Þ

� �2

(4.10)

for 1ppp1.
Similar arguments give the lower bound

hw1ðxÞjRHðxÞj
2iX

ðk1Þ2ð1	 k2ðCeÞ
	1I : IÞ2

y1ðk1 	 k2Þ2
, (4.11)

and it follows that

hw1ðxÞjRHðxÞj
2pi1=p

X
y1=p
1

y21

ðk1Þð1	 k2ðCeÞ
	1I : IÞ

ðk1 	 k2Þ

� �2

(4.12)

for 1ppp1. It is emphasized that the bounds given by (4.10) and (4.12) hold for all
anisotropic composites.
Explicit bounds on the contraction ðCeÞ

	1I : I follow immediately from the work
of Kantor and Bergman (1984) and are given by

ðkþHSÞ
	1pðCeÞ

	1I : Ipðk	HSÞ
	1, (4.13)
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where k	HS and kþHS are the Hashin and Shtrikman (1963) bulk modulus bounds
given by

kþHS ¼ k1y1 þ k2y2 	
y1y2ðk2 	 k1Þ2

k1y2 þ k2y1 þ 2 ½ðd 	 1Þ=d�m1

� �
(4.14)

and

k	HS ¼ k1y1 þ k2y2 	
y1y2ðk2 	 k1Þ2

k1y2 þ k2y1 þ 2 ½ðd 	 1Þ=d�m2

� �
. (4.15)

The work of Kantor and Bergman (1984) shows that the bounds given by Eqs. (4.13)
hold both for the well-ordered case k14k2, m14m2 and the non-well-ordered case
k1ok2, m14m2.
For the well-ordered case, k14k2 one applies inequality (4.13) to Eqs. (4.10) and

(4.12) to find that

hw2ðxÞjRHðxÞj
2pi1=p

Xy1=p
2 �

k1k2ððk1Þ	1 	 ðkþHSÞ
	1
Þ

y2ðk2 	 k1Þ

 !2

¼ y1=p
2 ðL2Þ

2 (4.16)

and

hw1ðxÞjRHðxÞj
2pi1=p

Xy1=p
1 �

k1k2ððk2Þ	1 	 ðk	HSÞ
	1
Þ

y1ðk1 	 k2Þ

� �2

¼ y1=p
1 ðL1Þ

2 (4.17)

and bounds (3.6) and (3.7) follow.
To obtain Eq. (3.8) we recall Eq. (3.10) for r ¼ 1 to see that

L1pkjRHðxÞjkL1ðQ1Þ
pkjRHðxÞjkL1ðQÞ (4.18)

and Eq. (3.8) follows.
For the non-well-ordered case, k1ok2 one applies inequality (4.13) to Eqs. (4.10)

and (4.12) to find that

hw2ðxÞjRHðxÞj
2pi1=p

Xy1=p
2 �

k1k2ððk1Þ	1 	 ðk	HSÞ
	1
Þ

y2ðk2 	 k1Þ

� �2

¼ y1=p
2 ðM2Þ

2 (4.19)

and

hw1ðxÞjRHðxÞj
2pi1=p

Xy1=p
1 �

k1k2ððk2Þ	1 	 ðkþHSÞ
	1
Þ

y1ðk1 	 k2Þ

 !2

¼ y1=p
1 ðM1Þ

2 (4.20)

and bounds (3.6) and (3.7) follow.
To obtain Eq. (3.11) we recall Eq. (3.6) for r ¼ 1 to see that

M2pkjRHðxÞjkL1ðQ2Þ
pkjRHðxÞjkL1ðQÞ (4.21)

and Eq. (3.11) follows.
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5. Optimality

In this section, it is shown that the lower bounds presented in Section 3 are
attained by the hydrostatic component of the stress fields inside the Hashin–Shtrik-
man (1962) coated sphere and cylinder assemblages. The coated cylinder assemblage
is constructed as follows. A space filling configuration of disks of different sizes
ranging down to the infinitesimal is placed inside the unit square Q. Each disk is then
partitioned into an annulus called the coating and a concentric disk called the core.
The area fractions of coating and core are the same for all disks. The unit square Q

filled with the coated cylinder assemblage is illustrated in Fig. 2. The construction of
the coated sphere assemblage follows the same pattern. A space filling configuration
of spheres is placed inside the unit cube. Each sphere is partitioned into a spherical
shell called the coating and a concentric sphere called the core. Here, the volume
fractions of coating and core are the same for every sphere.
The explicit formula for the bulk modulus for the coated sphere construction was

derived in Hashin (1962). The formula for the bulk modulus for the coated cylinders
construction was given by Hashin and Rosen (1964). It is well known from the work
of Hashin and Shtrikman (1963) that the associated effective bulk moduli for the
coated sphere assemblages attain the bulk modulus bounds k	HS and kþHS. The
analogous statements for the coated cylinder assemblages can be found in the work
of Hashin and Rosen (1964). It is pointed out that the hydrostatic stress fields are
constant inside the core phase and inside the coating phase for the coated sphere and
cylinder assemblages.
For assemblages with core of material one and coating of material two, the

effective bulk modulus is given by k	HS, the hydrostatic stress field inside the core is
given by s0L1 and the hydrostatic stress field inside the coating is given by s0M2. For
assemblages with core of material two and coating of material one, the effective bulk
modulus is given by kþHS, the hydrostatic stress field inside the core is given by s0L2

and the hydrostatic stress field inside the coating is given by s0M1. From these
observations it is evident that bounds (3.6), (3.7), (3.9) and (3.10) are attained by the
Fig. 2. The unit square is filled with the Hashin–Shtrikman coated cylinder assemblage.
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hydrostatic stress fields inside the coated sphere and coated cylinder assemblages.
For k14k2, one checks that L14M2 and it follows that coated sphere and cylinder
assemblages with a core of material one and coating of material two has a
hydrostatic stress field that attains the lower bound (3.8). For k1ok2, one checks
that L1oM2 and it follows that coated sphere and cylinder assemblages with a core
of material one and coating of material two has a hydrostatic stress field that attains
the lower bound (3.11).
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